Dawson

ROAD MAINTENANCE

TRIP INSPECTION SYSTEM

Dawson Road Maintenance

Brian Eshpeter, Daniel Fernandez

Mohammad Abbas Yunus, Pui Hei Wong, Syed Mohammed Sadiq Rizvi, Faiyaz Sattar
12/06/2024

Table of Contents

ANALYSIS ceneiiiieiie ittt et et e e e e e enaee 3
Problem DesCription.....c..eee e iueeriiieei et e e eneenens 4
REQUITEIMENLS «euueeneeniniieieie ettt et et e et e e e et e e e e eneeeneens 5
ANALYSIS ceniiiiiiiie e ettt e e eeas 10
DI o4 | O PP PP PRPPP PRI 15
IMPlemMentation.......veueeueeieei et e ee et e e e e e 23
TESTINE +eneneieee ettt ettt e e et e e e e e enee 27
CONCIUSION .. ceutiaiiiieii ettt ettt et e en e e e e 32
ReEfETENCES: . eneneeeiiee e 33
APPENAIXES ceneeereneinetie et et e et et et et et et e etae et eeneeeneeeneeeneeneens 35

1. Weekly REPOTTS ..cvniniiiiiiiieie et 35

2. Project Proposal........oou i 41

3. MIdterm REVIEW ..c.ueuiiiiiiiiiiiiiie e 43

4. CS SROWCASE...eeuiiniiiiiiiiiiii ettt et e e e e eens 44

5. FInal Client PreSentation c.uueeeeeeieeeeeetieeeeeeeeneeeneeneeeneeanseanseaneans 47

Analysis

Ensuring compliance with vehicle inspection regulations is a critical responsibility for Dawson
Road Maintenance (DRM). However, missed pre-trip inspections for heavy trucks can lead to
regulatory violations and operational risks, highlighting the need for an efficient notification
system. To address this challenge, we have developed an intelligent, automated solution
leveraging DRM’s existing SkyHawk Vehicle Telematics system. This system uses geofences
around DRM yards to track truck movements and integrates with the trip inspection system via
APIs. It verifies the completion of mandatory inspections and sends real-time email notifications

to supervisors if inspections are missed.

To enhance transparency and usability, we developed a user-friendly frontend interface that
displays all missed inspections and truck movements in real-time. The system’s dashboard
allows supervisors to view key information such as inspection status, truck details, and geofence
violations in an intuitive and organized format. With this web-based interface, managers can
access critical insights at a glance, enabling immediate action to ensure compliance. By
streamlining this process and providing actionable visibility, our solution not only upholds

regulatory standards but also fosters a safer and more accountable fleet management system.

Problem Description

Efficient and compliant vehicle operations are crucial for ensuring road safety and adhering to
legal standards. In this context, pre-trip inspections of heavy trucks are not only a legal
requirement but also a critical step in maintaining operational reliability. However, instances of
missed trip inspections can lead to safety risks and legal repercussions, particularly during
random checks by Commercial Vehicle Safety Enforcement (CVSE) officers. To address this
issue, the Dawson Road Maintenance (DRM) division of The Dawson Group has identified the

need for an automated notification system.

This project, "Trip Inspection System," leverages SkyHawk vehicle telematics to detect when a
heavy truck exits the yard and cross-references this event with the company's trip inspection
records through an API. If a valid and current inspection is not found, an immediate notification
is sent to the respective supervisor, ensuring timely corrective actions. By implementing this
system, DRM aims to enhance compliance, reduce risks, and streamline operations, contributing

to safer roadways and improved efficiency.

Requirements

The Trip Inspection System is engineered to enhance compliance with pre-trip inspection
regulations through the seamless integration of advanced geofence monitoring, inspection
validation, and notification mechanisms. These requirements serve as the foundation for the
system's development, ensuring that it meets the operational needs of Dawson Road Maintenance
while maintaining scalability, reliability, and efficiency. By addressing both functional and non-
functional aspects, the outlined requirements provide a comprehensive framework to guide the

design and implementation of a robust, user-friendly, and performance-oriented solution.

System Functional Requirements

The functional requirements outline the core capabilities the system must provide to achieve its

objectives:
1. Geofence Monitoring and Detection:
o Establish geofence detection around Dawson yards using SkyHawk telematics.
o Detect vehicle departures and categorize exits (temporary or extended).
2. Pre-Trip Inspection Validation:
o Validate truck inspections by querying the DRM Trip Inspection API.

o Confirm that the inspection was performed within an 8-hour (default) timeframe

when a geofence alert is received.
3. Automated Supervisor Notifications:

o Trigger automated email alerts using SendGrid when a truck exits the yard

without a valid inspection.

o Include detailed information such as truck ID, yard location, supervisor name &

contact information, and departure timestamp in the alerts.

Real-Time Data Processing:

o Process geofence alerts and inspection validations in real-time to ensure timely

notifications.
o Minimize delays by optimizing API responses and system computations.
Dynamic GPS Data Validation:

o Validate the accuracy of GPS data, ensuring it is recent and falls within valid

coordinate ranges.
o Disregard stale or static GPS data to improve the reliability of alerts.
Speed and Distance Verification:

o Implement speed checks and calculate distances between the truck and the

geofence to confirm actual departures.
o Use Haversine formula-based calculations for precision.
Inspection Database Queries:

o Query the DRM Trip Inspection Database to retrieve inspection status and

validate data integrity.

o Handle incomplete or missing inspection data gracefully by retrying or notifying

the appropriate entity.

8. Frontend Monitoring Dashboard:

o Provide a dashboard displaying truck statuses, inspection details, yard locations,

and supervisor contacts.

o Allow supervisors to monitor compliance metrics visually.

9. Error Logging and Troubleshooting:

o Record system errors, such as API failures and geofence misconfigurations, in

detailed logs.

10. Prototype Testing and Deployment:

o Conduct extensive testing with dummy APIs and real data to ensure seamless

functionality.

o Deploy the system on a scalable and accessible platform like Heroku for

production readiness.

System Non-Functional Requirements

The non-functional requirements define the operational standards the system must meet to

function effectively and reliably:
1. System Expansion Capability

e The system architecture must support the monitoring of multiple yards and vehicles

simultaneously, accommodating the growth of Dawson Road Maintenance’s fleet and

operational areas.
e The design should allow seamless integration of additional APIs or monitoring modules

without disrupting existing functionality.
2. Real-Time Validation and Processing

e GPS and inspection data must be validated in real-time to ensure immediate and accurate
decision-making.
« The geofence monitoring system must distinguish between temporary exits and actual

departures, reducing unnecessary notifications.

3. Data Accuracy and Consistency

e Inspection data retrieved from the DRM Trip Inspection APl and GPS records from the
SkyHawk system must be cross-verified for consistency before triggering notifications.
e The PostgreSQL database schema must ensure structured and reliable storage of

inspection and geofence data, avoiding duplication or inconsistencies.

4. Secure Configuration Management

All sensitive credentials, including API keys for SendGrid, SkyHawk, and PostgreSQL,
must be securely managed using Heroku’s environment variable feature.
Access to configuration settings must be restricted to authorized personnel to prevent

unauthorized modifications.

5. Supervisor-Focused Usability

The system must provide concise and actionable email notifications, including critical
details like truck ID, inspection status, and yard location, ensuring supervisors can
respond promptly.

The frontend dashboard must display inspection records, geofence events, and truck

statuses in an intuitive and user-friendly format.

6. Robust Error Handling and Resilience

Logs must capture and categorize errors such as API timeouts, invalid GPS data, or email
delivery failures, ensuring quick debugging and resolution.
The system must handle temporary API unavailability gracefully, retrying failed requests

without disrupting overall functionality.

7. Modular and Flexible Design

The codebase must be modular, enabling independent development and maintenance of
components like geofence monitoring, inspection validation, and notification systems.
The system design should support future enhancements, such as integrating advanced

analytics tools or additional data sources.

8. Deployment and Hosting Adaptability

Heroku must provide a stable hosting environment with streamlined deployment

processes and the ability to scale resources as demand grows.

e The deployment pipeline should support automated testing and configuration for

smoother updates and rollouts.
9. Alert Accuracy Optimization

o False positives must be minimized through GPS validation mechanisms, speed checks,
and distance calculations.
o Buffer durations must be implemented to differentiate between short-term yard exits and

actual departures.
10. Insightful Data Visualization

o PostgreSQL must support seamless integration with Power Bl to generate detailed
dashboards, providing supervisors and stakeholders with actionable insights into
inspection compliance and truck movements.

« Visualizations should focus on presenting real-time and historical data for decision-

making and performance evaluations.

10
Analysis

The Missed Trip Inspection Notification System addresses the critical need to automate
compliance monitoring for pre-trip vehicle inspections, reducing risks associated with manual
oversight. This section outlines the in-depth analysis conducted, leveraging extensive research,
technical exploration, and knowledge gathering. By understanding the problem domain and
defining the key system components, the team established a solid foundation for a scalable and

reliable solution.

1. Problem Understanding and Definition

The analysis began with a clear understanding of the operational challenges faced by Dawson

Road Maintenance:
e The legal requirement for pre-trip vehicle inspections under CVSE regulations.

e The inefficiency and risks posed by manual inspection tracking, leading to missed

inspections and potential penalties.
o The need for real-time monitoring and notifications to improve compliance and safety.

This understanding underscored the importance of a system that seamlessly integrates geofence

monitoring, inspection validation, and automated notifications.
2. Research and Knowledge Gathering

The team extensively researched tools, platforms, and technologies to address project

requirements:
1. Heroku:

o Studied Heroku’s capabilities for deploying scalable web applications and hosting

the system’s backend.

o Learned to configure Heroku pipelines, manage environment variables, and

optimize deployment processes.

11

2. Postman:

o Used Postman to test and debug API integrations, including SkyHawk telematics,
DRM Trip Inspection, and Yard APIs.

o Gained expertise in validating request and response data flows for seamless

integration.
3. Trello:

o Implemented Trello as a project management tool, creating a Kanban board to

track tasks, assign responsibilities, and monitor progress.
o Used Trello for sprint planning and improving team collaboration.
4. Programming Languages and Frameworks:

o Initially explored Node.js for backend scripting, focusing on its asynchronous

capabilities.

o Transitioned to Python for its extensive library support and ease of integration

with APIs and databases.

o Researched and implemented Python libraries such as Flask, Requests, pytz, and

geopy to address specific technical needs.
5. Databases and Visualization:

o Researched PostgreSQL for storing geofence alerts, inspection records, and truck

movement data.

o Learned to connect PostgreSQL to Power BI for creating interactive dashboards

that provide actionable insights.

12

3. Key System Components

Through analysis and knowledge gathering, the following components were identified as critical

to the system:
1. Geofence Monitoring:

o SkyHawk telematics and geofence data were analyzed for real-time truck

movement tracking.

o Developed mechanisms to identify valid departures while filtering out temporary

exits and calibration errors.
2. Inspection Validation:

o Established validation logic to ensure inspections were performed within the

required 8-hour window.

o Used the DRM Trip Inspection API to fetch and verify inspection records in real

time.
3. Notification System:
o Integrated SendGrid for automated email notifications.

o Ensured notifications included detailed truck information, yard location, and

timestamps for immediate supervisor action.
4. Database and Data Handling:

o PostgreSQL was selected for its reliability and scalability in managing inspection

and geofence data.

o Designed efficient query mechanisms for retrieving and processing inspection

data.
5. Visualization and Reporting:

o Created Power BI dashboards to visualize compliance metrics, truck movements,

and inspection statuses.

13

4. Challenges and Solutions

The analysis identified several challenges, which were addressed through iterative

improvements:

Real-Time Processing:

o Implemented speed and distance checks to minimize false positives caused by

temporary yard exits.
API Integration:

o Resolved communication issues between SkyHawk and DRM APIs using

Postman for debugging and validation.
Scalability:

o Designed a modular architecture to handle multiple trucks and geofences without

performance degradation.
Data Visualization:

o Researched methods to connect PostgreSQL to Power BI, enabling effective
visualization of compliance data. By applying newer AWS SSL certificates, we

resolved the connectivity issue.

Timezone Conversion:
o The APIs returned timestamps in UTC, causing issues with time-sensitive
operations. To combat this, we integrated Pytz to convert timestamps to the local

timezone (PST), ensuring consistent handling of time across all processes.

5. Outcomes of Analysis

The analysis phase resulted in the following outcomes:

A well-defined problem scope and solution framework.

14

e A scalable, modular architecture integrating geofence monitoring, inspection validation,

and notifications.

o Expertise in deploying and testing the system on Heroku, with optimized API and

database interactions.

e Arobust data visualization platform using Power BI for actionable insights.

This thorough analysis, grounded in research and technical exploration, ensured that the Missed
Trip Inspection Notification System met the operational requirements of Dawson Road
Maintenance. By addressing challenges and optimizing the integration of various components,

the project achieved a scalable and reliable solution tailored to real-world needs.

15
Design

The design of the Trip Inspection System integrates real-time geofence monitoring, inspection
validation, and automated notifications. This section presents the system's key components and
workflows, supported by detailed architectures that define the logic and data flow. The design is

modular, scalable, and tailored to Dawson Road Maintenance's operational requirements.

1. System Overview
The system is designed to automate pre-trip inspection compliance monitoring by leveraging:
1. Geofence Alerts: Detecting truck movements using SkyHawk telematics.

2. Inspection Validation: Querying the DRM Inspection API to verify inspection

compliance.
3. Notification Workflow: Sending actionable alerts to supervisors or fallback recipients.
4. Database Integration: Tracking alerts, inspections, and notification status.

5. Visualization: Presenting compliance metrics and truck movements through Power BI

dashboards.

2. Core Design Architectures
2.1. Full Project Architecture

The project architecture ensures the end-to-end functionality of the system, starting from
geofence alert reception to supervisor notification.

Key Steps:

1. Receive Geofence Alerts: SkyHawk API triggers an alert when a truck crosses a

geofence.

16

Fetch Data:

o Yard API retrieves geofence and yard-specific details.

o SkyHawk API provides truck coordinates, speed, and movement data.

o Inspection API returns the last inspection timestamp.
Inspection Validation:

o Validates if the last inspection timestamp is within the required inspection period.
Movement Status Check:

o Uses a three-point check (over 30 seconds) to confirm if the truck is stationary or

moving.
Notification Workflow:

o Determines whether an email should be sent based on inspection and movement

results.
Database Updates:

o Logs alerts, inspections, and email statuses for future reference.

17

"Full Project Architecture' diagram for a visual representation:

'

| Receive Geofence Alert ‘|
L A
P e
| Call ¥ard API to get coordinates |
e g
| call SkyHawk API to fetch truck details (coordinates, speed, etc.) |
-,
[Retrieve inspection time from the Inspection APl |
e A

’

Fes 5
| Calculate time difference between inspection time and alert timestamp |
S

¥

YEES Time difference = Inspection F‘erin-d?>%j

Fs -9 r =i
| Inspection is due | | Inspection is not due |
e A " I
| Check if the unit exists in the tracking table |
" =
Unit exists? Bo

Yes

g \
| create new record |
4

IJ’- ™y
| Do net send email
Tt -

=

Fs B i i o Ty
| send email (if inspection is due) | | Do not send email | | Store inspection time and alert timestamp |
N 7 i
}Y< | send email (if inspection is due) |
=t =

&
| Perform 3-point check for 30 seconds (0, 10, 20) |
k I,

¥ i

fi ™,
| Calculate distance between yard and truck coordinates]
L =4

’

P Ty
| Getspeed and determine truck status |

Moving awa Truck moving status? Stationary or Mo Data Found

i ™ Pt ™y
| send email to supervisor | | Do not send email |

| - |
-

&

2.2. Email Sending Logic

The email sending workflow ensures clear communication while differentiating between

development and production environments.

Key Features:

1. Environment Modes:

18

o Development Mode: Sends test emails to default recipients for validation.

o Production Mode: Sends real emails to supervisors or fallback recipients.

2. Email Preparation:

o Gathers inspection, geofence, and movement details to craft actionable emails.

3. Error Handling:

o Logs failures in email sending and retries when possible.

4. Database Integration:

o Tracks email status to avoid redundant notifications.

""Email Sending Logic'" diagram for a detailed workflow:

|'/_ Check Mode _\'|
|

mode == "‘dewvelopment’

ode == "'production"*

Production Mode

|'/_Get Supervisor Emails_\]

\.

7

Development Mode

|'/Prepa re Dew Email"']

Superwvisors found Mo supervisors

" 2

|' Use Supervisor Emails ‘|

|"_Use Fallback Recipients_k]

Al | C

|")’Send to Default Recipientsﬂﬁ]

\/M/)

s -

|'[Prepare Production Emaili-"|

|
Ly

w L

[/ Log Result s‘.ﬁ\]
| |

N .

L

|'/ Send Emails |

| |
e oo

;Success "—t Failure

|'/Update Databasem]

|'/ Log E rrori\]

|
-

- - A

19

2.3. Moving Status Logic

The moving status logic ensures accurate detection of a truck's movement by analyzing GPS and
speed data.
Logic Details:

1. Three-Point Check:

o Collects data at intervals of 0, 10, and 20 seconds to assess movement.
2. Movement Points:

o Assigns points based on speed and distance thresholds.
3. Status Determination:

o Moving Away: At least 2 movement points.

o Stationary: All values below thresholds.

o No Data Found: Insufficient or missing inputs.

"Moving Status Logic" diagram for specifics:

T o

| Tmput Parameters |—
.

|
|]

initial_distance
distance_1 0s
distance 3I0s
speaed_initial
speaed_ 10s
speaed_3I0s

" _ Ty PMOWEMEMT THRESHOLD = S0 mebters
|._‘ Define Constants '_}" SPEED THRESHOLD — 3.0 krmmvh
wes Al distances nulliyzero AMND ™ ho
ol speeds nulifzero? -~
o ey o —,
| Return “"MNo Data Found® | | Conwvert null values to O |
b

= Extract numeric values
= Handle inwvalid formats
- Conwvert to float

~ |
]

| Parse Speed Strings -:|»=::

l I distance change_10s — T

— [distance 10s - initial_distancag

| Calculate Distance Changes [——
e — distance_ _change_ 30s —
l [distance 3I0s - initial_distamncag

Fa T J Increment counter For each:
| Count Mowverment Points |[—— = speed = 3.0 km/h

e ‘L Sy | = distance change > 5.0 meters
wes

+ Mowverment Points == 27

o

I: Returm “"Mowing ASoasway ™ :I

wes < all speeds = 3.0 kmyh AlND =1
| Al distance changes = S.0m? 7

|'7 Return "Stationary” | |€ Returm "No Data Found® 7\|

&

\I/

20

2.4. Multi-Alert Logic

This logic prevents redundant notifications by implementing alert tracking and cooldown

periods.

Workflow:
1. Tracking Alerts:

o Maintains inspection timestamps, first alert time, and alert counters in the

database.
2. Cooldown Period:

o Ensures no duplicate emails are sent within an 8-hour window for the same

inspection.
3. Reset Conditions:
o Resets counters for new inspections or alerts outside the cooldown period.
4. Fallback Notifications:
o Ensures supervisors receive emails even if there is no inspection record available.

"Multi-Alert Logic" diagram for more details:

<
? Ty
| Receive Geofence Alert |
. J
| Look up unit in tracking table |
g A
No Unit exists in tracking table? Yes ¢
./ -\. oo N
| Create new record | | Get stored inspection time and alert data |
. A i A
2 v
|' Set counter to 1 I F<Stnren inspection time == Current inspection time? jND
N gt ra N s .)
| Calculate time difference from first alert | | Reset counter to 1 |
‘; i y. _
| Store inspection time and alert timestamp |
p p
i)
Yes Mo e h
l E Time difference < 8 hours? j [Update inspection time |
& B -~ ~ P ~ > i
| send email (if inspection is due) | | Increment counter | | Reset counter to 1 | l
| Update first alert timestamp |
P 9 e ~ = ’
| Don't send email | | Update first alert timestamp | l

E i E i Vs -
l | sSend email (if inspection is due)
- = e -
| Send email (if inspection is due} |

21

3. Data Flow and Interaction
The system integrates multiple components through a seamless flow of data:
1. Input:
o Geofence alerts, GPS data, and inspection records.
2. Processing:
o Validates data, determines truck status, and decides notification necessity.
3. Output:

o Sends email alerts and updates the database with status and timestamps.

4. Security and Resilience
e Environment Variables:
o API keys and credentials are securely stored to prevent unauthorized access.
o Error Handling:

o Logs all failures for debugging while ensuring the system continues to operate for

unaffected components.

5. Modular Design
The system is structured into distinct modules:
1. Alert Handling:
o Processes geofence alerts and fetches required data.
2. Validation:

o Validates inspection compliance and truck movement status.

3. Notifications:
o Prepares and sends emails based on validation results.
4. Database Integration:
o Tracks alerts, inspection times, and email statuses for future reference.
The design ensures that the system is capable of handling real-time geofence alerts, inspection
validations, and automated notifications. With modular components and detailed logic, the

system meets Dawson Road Maintenance's requirements while maintaining scalability and
reliability.

22

23

Implementation

The Trip Inspection System was implemented using a modular and scalable approach to ensure
real-time monitoring, reliable notifications, and ease of deployment. Below is an overview of the

implementation process and components:

1. System Architecture

The system integrates multiple APIs, a database, and a web interface to monitor truck

movements and inspection compliance:
e Input: Geofence alerts from the SkyHawk API and inspection data from the DRM API.

e Processing: The system validates inspection compliance and truck status using geofence

data and movement analysis logic.

e Output: Notifications sent to supervisors and dashboards displaying compliance metrics.

2. Backend Development

o Developed using Flask, which provides a lightweight framework for building RESTful
APIs and rendering web pages.

o KeyAPIs:

o SkyHawk API: Retrieves truck telemetry data, including GPS coordinates and
speed.

o DRM API: Provides inspection records and supervisor contact details.
o Custom Endpoints:
= /geofence-alert: Handles incoming geofence alerts.

= /all-geofence-alerts: Displays a history of geofence alerts.

24

3. Database Integration
o PostgreSQL was used for robust and scalable data storage.
e Schema Design:
o geofence alerts: Stores records of geofence breaches.
o unit alert tracking: Tracks alerts for multi-alert management.
o yard supervisors: Stores supervisor details for each yard.

e Psycopg2 was used for database communication.

4. Movement Detection Logic
e Implemented a three-point movement detection algorithm:
o Monitored truck speed and distance over three intervals (initial, 10s, 30s).

o Classified movements into "Stationary," "Moving Away," or "No Data Found"

based on thresholds:
= Speed > 15 km/h or distance > 10 meters — "Moving Away."

= Speed < 5 km/h and stable distance — "Stationary."

5. Automated Notifications
e SendGrid was integrated for email alerts.
o Alerts include truck ID, geofence location, inspection status, and timestamps.

o Multi-alert management prevents redundant notifications by implementing an 8-

hour cooldown period.

25

6. Web Dashboard
o Built using Jinja2 templates for dynamic HTML rendering.
o Key Features:
o Displayed geofence alerts and truck statuses.
o Configurable settings for alert periods and thresholds.

o Accessible at /all-geofence-alerts and /settings endpoints.

7. Deployment
o Hosted on Heroku for scalability and ease of access.

o Environment variables (e.g., API keys, database credentials) were securely

configured using .env files.

o Gunicorn served the Flask application in production.

8. Testing and Debugging
e Comprehensive testing was conducted using Postman and curl for API endpoints.
o Logs and database queries were used to debug and validate system behavior:
o Verified geofence alert processing and movement detection.

o Ensured email alerts were delivered accurately.

9. Power BI Integration

e Connected PostgreSQL to Power BI for real-time visualization of inspection compliance

and truck movements.

26
e Dashboards provided actionable insights with drill-down capabilities for specific yards
and trucks.

This implementation ensures a robust, real-time system that meets Dawson Road Maintenance's

operational needs while remaining scalable and reliable for future enhancements.

Testing

The Trip Inspection System was tested rigorously across multiple phases to ensure

functionality, reliability, and robustness. The testing included geofence alerts, inspection

validations, movement status determination, email notifications, error handling, and deployment

processes. This section highlights both successful and failed scenarios, providing a detailed

overview of the iterative improvements made during testing.

1. Geofence Alert Handling

Test Test
Case . L. Input Expected Outcome Result
Description
ID
. . Yard API and SkyHawk API are
T1 Single geofence|Simulated truck called successfully; correct alert |[Pass
alert geofence alert |
is logged.
Multiple Simulated alerts |Both alerts are processed and
T2 Pass
geofence alerts |[for 2 trucks tracked correctly.
Invalid Malformed Error is logged; no further
T3 geofence alert . Pass
geofence data processing occurs.
data
SkyHawk API |Valid geofence ||API failed to return truck F.a il (I.St Phase);
T4) . Fixed in 2nd
failure alert details; error logged.
Phase Pass

2. Inspection Validation

28

Test Test
Case ID|Description Input Expected Outcome |Result
Inspection Inspection timestamp ||Inspection flagged as
T5 Pass
overdue older than 8 hours overdue.
Inspection timestam No email is sent;
T6 Valid inspection | . Dt P lstatus logged Pass
within 8 hours
correctly.
. . . . Fail (1st Phase);
T7 Mlssmg No inspection ' Alert trlggered for Fixed in 2nd Phase
inspection data |timestamp retrieved |overdue inspection. Pass
3. Movement Status Determination
Test
Test
Case . L. Input Expected Outcome Result
Description
ID
> n 1
T8 Moving away Speed 3 km/h and Status"set to "Moving Pass
distance > 5 meters Away.
. <3 km/h
T9 Stationary Speed 3 km/h and ?tatgs set to" Pass
distance < 5 meters Stationary.
o Fail (1st Phase);
No data Missing GPS or speed ||Status set to "No Data al (.St ase);
T10 . " . Fixed in 2nd Phase
available data Found"; no email sent.
Pass
Brief yard re- ||Speed and distance No email is sent; status
TI11 . . e e: " Pass
entry change intermittently |[remains "Stationary.

4. Multi-Alert Logic

29

Test
Case |Test Description |Input Expected Outcome Result
ID
Repeated alert for ||Alerts within 8- No duplicate email is
TI12 . Pass
same truck hour window sent.
. . Fail (1st Phase);
T13 Multiple trucks Slmglated alerts for ||Separate ‘emalls‘sent for Fixed in 2nd Phase
multiple trucks overdue inspections.
Pass
New inspection |[New inspection Tracking resets; email
T14 . . . Pass
time timestamp detected |sent only if overdue.
5. Notification System
Test Test Description |Input Expected Outcome Result
Case ID P P P
Valid supervisor |[Supervisor email Email is sent
T15 - Sup P successfully; database Pass
emails exists
updated.
Missing No supervisor Email sent to fallback
T16 ; . . . Pass
supervisor emails |email found recipients.
. . Fail (1st Phase);
Email server Simulated Error logged; no system al (.St ase);
T17 . . Fixed in 2nd Phase
failure SendGrid outage ||crash occurs.
Pass
6. Error Handling
Test
Case |[Test Description |Input Expected Outcome Result
ID
. .) . ||[Fail (1st Phase);
T18 API timeout Simulated timeout ||Error logged; retry logic Fixed in 2nd Phase
for SkyHawk API |executed successfully. Pass

30

Test
Case |[Test Description |Input Expected Outcome Result
ID
T19 Malformed API |[Invalid data from ||Error logged; invalid Pass
response Inspection API data skipped.
Missing geofence ||Alert without truck |Error logged; no
T20 : ; Pass
alert data ID or coordinates |processing occurs.
7. Deployment and Performance
Test
Test
Case . L. Input Expected Outcome Result
Description
ID
) Fail (1st Phase);
™1 Heroku Full system System deployed without Fixed in 2nd Phase
deployment deployed errors.
Pass
High alert Simulated alerts System processes alerts
T22 without performance Pass
volume for 10+ trucks .
degradation.
il (1st Phase);
SkyHawk API |SkyHawk API Error logged; other F.a i S ase);
T23) Fixed in 2nd Phase
failure returns no data |lcomponents unaffected. Pass

8. Results and Observations

1st Phase:

o Multiple failures identified in multi-alert logic, API integrations, and email

notifications.

o SkyHawk API timeout handling was missing, causing data gaps.

o Email dispatch failed occasionally due to configuration issues with SendGrid.

o Heroku deployment encountered environment variable misconfigurations.

31

e 2nd Phase:
o All identified issues were addressed:
= Robust error handling for API failures and malformed responses.
= Improved multi-alert logic to handle simultaneous alerts efficiently.

= Fixed email dispatch issues and added fallback mechanisms for missing

data.
= Deployment pipeline on Heroku stabilized with proper configurations.

The testing process revealed initial gaps that were systematically resolved during iterative testing
phases. By simulating real-world scenarios, such as multiple trucks and API failures, the system

demonstrated robust functionality, reliability, and resilience in its final form.

32

Conclusion

Dawson Road Maintenance has taken a giant leap forward with the Trip Inspection and Geofence
Alert System in its commitment to improving compliance and operational efficiency. The system
integrates advanced geofencing, inspection validation and automated notifications to guarantee
that pre-trip inspection regulations are met with precision. The fleet managers’ challenges are
well understood, and its user-friendly interface, robust backend architecture, and seamless API

integrations demonstrate this.

Real time data validation, secure notifications and dynamic dashboards were integrated into a
rigorous development process, from initial concept to final deployment, to provide supervisors
actionable insights at a glance. Additionally, the system's ability to handle challenges such as
time zone consistency, API communication errors and redundant notifications shows the system's

resilience and scalability.

This project is a result of our team’s efforts working with the most up to date technologies such
as PostgreSQL, Flask, and Power BI, and delivering a solution that is perfectly aligned with
Dawson’s operational needs. Future scalability has been factored into the design of the system so

that it will remain relevant as fleet operations increase.

33

References:

Python Libraries:

1.

2
3
4.
5
6

Flask - https://flask.palletsprojects.com

. Psycopg - https://www.psycopg.org/doc

. Pytz - https://pypi.org/project/pytz

Geopy - https://geopy.readthedocs.io

. SendGrid API Client - https://sendgrid.com/docs/API Reference

. Jinja2 - https://jinja.palletsprojects.com

Database and Visualization:

. PostgreSQL - https://www.postgresql.org/docs

1
2. PGAdmin - https://www.pgadmin.org/
3.

4. AWS RDS SSL Certificates -

Power BI - https://learn.microsoft.com/en-us/power-bi

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Using WithRDS.SS
L.html

Deployment and Hosting:

1.

APIs Used:
1.

Heroku - https://devcenter.heroku.com/](https://devcenter.heroku.com

SkyHawk API - Provided by Dawson Maintenance for truck telemetry (speed,
location, etc.).

Geofence Alert API - API to log alerts when trucks exit geofenced areas.
DRM Trip Inspection API - Provides data for inspections, yard details, and

supervisor contact information.

https://flask.palletsprojects.com/
https://www.psycopg.org/doc
https://pypi.org/project/pytz
https://geopy.readthedocs.io/
https://sendgrid.com/docs/API_Reference
https://jinja.palletsprojects.com/
https://www.postgresql.org/docs
https://www.pgadmin.org/
https://learn.microsoft.com/en-us/power-bi
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/UsingWithRDS.SSL.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/UsingWithRDS.SSL.html
https://devcenter.heroku.com/%5d(https:/devcenter.heroku.com

Tools Used:

1. Postman - https://learning.postman.com

2. GitHub - https://docs.github.com

Python Runtime:
1. Python - https://docs.python.org/3/

Other Technologies:
1. HTML & CSS(Jinja2 Templates) - https://jinja.palletsprojects.com/en/stable/

34

https://learning.postman.com/
https://docs.github.com/
https://docs.python.org/3/
https://jinja.palletsprojects.com/en/stable/

35

Appendixes

1. Weekly Reports

The following section provides a detailed summary of weekly progress and team

discussions throughout the development of the " Trip Inspection System."
Week 1: Initial Collaboration

e Tasks Completed:

o Developed an internal collaboration plan, arranging team meetings three

times a week.
o Defined individual roles and responsibilities within the team.
e Key Discussion Points:
o Strategies for effective collaboration and communication.

e Milestone:

o Established a collaborative workflow and organized the team structure.

Week 2: Project Planning
o Tasks Completed:
o Contacted Dawson representatives to arrange the first meeting.

o Conducted background research on Dawson Road Maintenance operations

and requirements.
o Finalized team availability for meetings with Dawson representatives.
o Key Discussion Points:
o Drafted preliminary questions for the first meeting with Dawson.

o Analyzed potential project challenges based on initial research.

36

e Milestone:

o Prepared for the first formal meeting with Dawson representatives.

Week 3: Project Kickoff
o Tasks Completed:
o Held the first meeting with Dawson representatives (Brian and Daniel).

o Reviewed SkyHawk telematics documentation and set up Postman for API

testing.
o Drafted and submitted the first version of the project charter.
e Key Discussion Points:
o Clarified technical aspects of SkyHawk and DRM APIs.

o Identified initial challenges, including false positives and integration

complexities.
e Milestone:

o Confirmed project scope and initiated API testing.

Week 4: Technical Exploration
e Tasks Completed:
o Conducted high-level design of the software architecture.
o Tested SkyHawk and DRM Trip Inspection APIs using Postman.
o Configured the Trello Kanban board for task tracking.
o Key Discussion Points:

o Explored methods to validate geofence alerts effectively.

37

o Analyzed how API data could be leveraged for inspection validation.
e Milestone:

o Established the architecture and validated core API functionality.

Week S: Prototype Development
e Tasks Completed:

o Built the initial prototype script for geofence monitoring and inspection

validation.
o Configured the GitHub repository for version control and collaboration.
o Implemented initial API integrations within the prototype.
o Key Discussion Points:
o Addressed potential data handling issues during API integration.
o Planned strategies for minimizing false positives in alerts.
e Milestone:

o Delivered a functional prototype demonstrating geofence monitoring.

Week 6: Notification System
o Tasks Completed:
o Configured and tested SendGrid for automated email notifications.
o Conducted live testing of the notification system using dummy data.
o Introduced error handling for API failures and invalid data.
o Key Discussion Points:

o Reviewed email formatting for clarity and professionalism.

o Discussed methods to handle notification delays.
e Milestone:

o Implemented and validated the notification system workflow.

Week 7: Frontend and Database Development
e Tasks Completed:

o Designed a frontend dashboard displaying inspection statuses and truck

details.

o Established a PostgreSQL database for storing geofence alerts and

inspection records.
o Began exploring Power BI integration for compliance visualization.
o Key Discussion Points:
o Discussed frontend requirements for supervisor usability.

o Identified database schema requirements for efficient data storage and

retrieval.
o Milestone:

o Delivered an operational frontend and database.

Week 8: Refinement and Debugging

o Tasks Completed:

38

o Enhanced GPS validation logic using distance calculations and two-point

checks.

o Introduced logging mechanisms for API failures and invalid data

detection.

39

o Tested deployment on Heroku for real-time functionality.
o Key Discussion Points:

o Addressed geofence calibration issues and brief exits causing false

positives.
o Discussed ways to improve error resilience.
e Milestone:

o Improved system accuracy and deployed on Heroku for scalability.

Week 9: Testing and GeoFence Alert System Deployment

e Tasks Completed:

o Created a dummy script with test truck data and conducted local server
testing.

o Designed and implemented a database structure to store geofence alert
details.

o Successfully deployed the GeoFence Alert System on Heroku for real-
time functionality.

o Updated the Trello board to reflect ongoing progress and completed
tasks.

o Reviewed and refined strategies for managing false positives, focusing on
geofence calibration and detection logic.

o Key Discussion Points:

o Discussed optimization strategies for the database to ensure efficient
storage and retrieval of geofence alerts.
o ldentified methods to address potential false positives caused by brief

geofence exits or data anomalies.

40

¢ Milestone:
o Deployed a scalable GeoFence Alert System on Heroku and finalized

database design for improved system efficiency.

Week 10: Modularization and Visualization
e Tasks Completed:
o Modularized the codebase for improved scalability and maintainability.

o Developed Power BI dashboards for visualizing truck movements and

inspection compliance.
o Conducted integration testing across all system components.
o Key Discussion Points:
o Reviewed Power BI dashboard insights for actionable decision-making.
o Discussed final refinements to code structure and database queries.
e Milestone:

o Delivered a modular and fully integrated system.

Week 11: System Optimization
o Tasks Completed:
o Optimized API call efficiency to reduce latency.
o Finalized frontend enhancements for user experience.
o Conducted rigorous end-to-end testing to ensure system stability.
o Key Discussion Points:

o Addressed final usability improvements for supervisors.

41

o Discussed post-deployment monitoring strategies.
e Milestone:

o Delivered a stable and optimized system.

Week 12: Final Preparations
e Tasks Completed:
o Presented Power BI dashboards to Dawson representatives.
o Addressed feedback related to timestamp errors and notification timings.
o Prepared comprehensive documentation for system handover.
e Key Discussion Points:
o Finalized user documentation and deployment readiness.
o Reviewed client feedback for potential post-deployment enhancements.
e Milestone:

o Prepared the system for production deployment and client use.

2. Project Proposal
The Project Proposal served as the foundation for defining the scope and objectives of the

" Trip Inspection System." Below is a summary of its key components:
e Problem Statement:

o A pre-trip inspection is mandatory for heavy trucks before leaving the
yard. Missed inspections can lead to legal and operational repercussions,

particularly during audits by CVSE.

o There was a need for an automated system to monitor truck departures and

validate inspection status to prevent compliance lapses.

42

e Proposed Solution:

o Leverage the SkyHawk telematics system installed on all heavy trucks,

with geofences set up around Dawson yards.
o Build an automated system to:
= Monitor truck departures.
= Validate inspection records through the DRM Trip Inspection API.

» Trigger email notifications to supervisors for missed or invalid

inspections.
o Objectives:
o Ensure consistent compliance with inspection regulations.

o Minimize manual oversight by automating geofence monitoring and

notification workflows.
o Enhance operational efficiency and supervisor response times.
e Constraints and Tools:

o Integration with SkyHawk and DRM APIs using secure communication

protocols.
o Deployment of the system on Heroku for scalability and accessibility.
o Use of Postman for API testing and Python for backend development.

This proposal laid the groundwork for the project's successful execution, aligning team

efforts with Dawson Road Maintenance's operational goals.

43

3. Midterm Review

The Midterm Review highlighted the team's progress, technical achievements, and
addressed challenges encountered during the development of the system. Below is a

summary of the key points covered:
e Progress Overview:

o Automated the SkyHawk authentication process and integrated it with the

DRM API for accurate data exchange.

o Developed a functional prototype with a fully implemented notification

system using SendGrid for email alerts.

o Implemented advanced asset tracking by leveraging GPS coordinates,

speed, and proximity to DRM yards.
e Script and System Results:

o Alerts included critical details such as asset information, yard name,

distance, and supervisor contacts.

o Notifications were triggered only when inspections were overdue,

ensuring precise and actionable alerts.

e Challenges and Solutions:
o Geofence Alerts:
» Challenge: Handling rapid re-entries and false positives.

= Solution: Implemented geodesic calculations for proximity checks

and added a buffer duration for validation.
o Scalability:

= Challenge: Supporting multiple geofences and trucks

simultaneously.

44
= Solution: Modularized the design to optimize API calls and reduce
performance overhead.
o Error Handling:
= Challenge: Addressing API failures and notification errors.

* Solution: Enhanced logging and implemented fallback mechanisms

for robust error management.
e Stretch Goals:

o Introduced GPS validation improvements, including range checks and

speed validation.
o Explored Power BI for compliance dashboards and visualizations.

o Modularized the codebase further for enhanced maintainability and

efficiency.

The review concluded with a demonstration of the prototype, showcasing the progress

achieved thus far and setting the stage for the system's final development phase.

4. CS Showcase

The CS Showcase presentation provided an opportunity to demonstrate the "Trip
Inspection System" to an audience of peers, faculty, and industry professionals. The
presentation outlined the project's objectives, technical achievements, and real-world

applications. Below is a summary of the key points covered:
Presentation Overview:
1. Problem Description:

o Heavy truck pre-trip inspections are legally required but often missed due

to oversight, leading to compliance risks and potential penalties.

o Supervisors require a robust, automated notification system to address

missed inspections effectively.

45

2. Proposed Solution:

o Automate the tracking of truck movements using SkyHawk telematics and

geofences.
o Verify inspection status through DRM APIs in real-time.

o Notify supervisors via email when a truck leaves the yard without a valid

inspection.
3. Objectives:
o Enhance compliance with inspection regulations.
o Minimize manual oversight with automation.

o Improve operational efficiency through real-time monitoring.

Key Features and Demonstration:
The presentation included a live demonstration highlighting the following key features:
o Real-Time Monitoring:

o Truck movements were tracked using geofence alerts from SkyHawk

telematics.

o The system verified inspection records via DRM APIs and identified

overdue inspections.
e Automated Alerts:

o Email notifications were sent to supervisors using SendGrid for missed

inspections or geofence breaches.

o Notifications included truck ID, inspection details, yard location, and

timestamps for immediate action.

46

e User-Friendly Dashboard:

o A web-based interface provided real-time insights into truck locations,

inspection logs, and compliance metrics.

o Built using Flask and Bootstrap, the dashboard ensured responsiveness

and ease of use.
e Advanced Movement Detection:
o Implemented three-point checks for precision in movement detection.

o Utilized speed and distance thresholds to differentiate between stationary

and moving trucks.
o Power BI Integration:

o Interactive dashboards visualized compliance data, truck movements, and

inspection statuses.

o Enabled fleet managers to analyze trends and identify areas for

improvement.

Challenges Addressed:
1. False Positives:
o Brief yard re-entries caused unnecessary alerts.

o Implemented buffer periods and geodesic calculations to reduce false

positives.
2. Scalability:

o System tested to handle multiple trucks and geofence alerts without

performance degradation.

47

3. API Integration:

o Resolved communication and data formatting issues with SkyHawk and

DRM APIs using Postman and error logging mechanisms.

5. Final Client Presentation

The final client presentation was an opportunity to showcase the complete "Trip
Inspection System" to Dawson Road Maintenance representatives and other stakeholders.
It highlighted the problem, solution, technical achievements, and the impact of the

project. Below is a summary of the key points covered:
Presentation Overview:
1. Problem Description:

o Heavy truck pre-trip inspections are legally required but are occasionally
missed, leading to compliance risks, operational inefficiencies, and

potential penalties from Commercial Vehicle Safety Enforcement (CVSE).

o Supervisors lacked an automated system to monitor, and address missed

inspections effectively.
2. Proposed Solution:

o Develop an automated, real-time system to monitor truck movements,
validate inspection status, and notify supervisors of missed or overdue

inspections.
3. Objectives:
o Ensure compliance with inspection regulations.
o Automate processes to reduce manual oversight.

o Provide supervisors with actionable information in real-time.

48

Key Features Demonstrated:
1. Real-Time Monitoring:

o The system utilized geofencing technology via the SkyHawk API to detect

truck movements and validate trip inspections.

o Integrated with the DRM API to retrieve inspection data for compliance

verification.
2. Automated Notifications:

o Notifications were sent to supervisors via SendGrid for missed or overdue

inspections.

o Fallback mechanisms ensured all alerts reached alternative contacts if

primary supervisors were unavailable.
3. User-Friendly Web Dashboard:

o A dashboard provided supervisors with real-time visibility into truck

locations, inspection logs, and geofence breaches.

o Built using Flask and Bootstrap, ensuring a responsive and intuitive

interface.
4. Advanced Movement Detection:

o The system implemented three-point checks to determine truck status
(e.g., moving away or stationary) based on speed and distance

measurements.
o Reduced false positives through precise calculations.
5. Data Centralization and Power BI Integration:

o Centralized data storage in PostgreSQL enabled seamless retrieval and

analysis of inspection records and geofence alerts.

49

o Power BI dashboards provided actionable insights into compliance trends,

truck movements, and operational metrics.

Challenges Addressed:
1. False Positives:

o Implemented buffer periods and geodesic calculations to minimize

unnecessary alerts caused by brief re-entries into geofenced areas.

2. Scalability:

o Designed the system to handle an increasing number of trucks and

geofence alerts without performance degradation.
3. API Integration:

o Resolved data formatting and latency issues with SkyHawk and DRM
APIs through debugging tools like Postman.

